翻訳と辞書
Words near each other
・ Phragmataecia roborowskii
・ Phragmataecia saccharum
・ Phragmataecia sericeata
・ Phragmataecia sumatrensis
・ Phragmataecia terebrifer
・ Phragmataecia turkmenbashi
・ Phragmatiphila
・ Phragmatiphila nexa
・ Phragmatobia
・ Phragmatobia amurensis
・ Phragmatobia assimilans
・ Phragmatobia fuliginosa
・ Phragmatobia lineata
・ Phragmatobia modesta
・ Phragmatobia placida
Phragmen–Brouwer theorem
・ Phragmidiaceae
・ Phragmidium
・ Phragmidium mucronatum
・ Phragmidium rosae-pimpinellifoliae
・ Phragmidium rubi-idaei
・ Phragmidium violaceum
・ Phragmipedium
・ Phragmipedium besseae
・ Phragmipedium boissierianum
・ Phragmipedium caricinum
・ Phragmipedium caudatum
・ Phragmipedium chapadense
・ Phragmipedium fischeri
・ Phragmipedium hirtzii


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Phragmen–Brouwer theorem : ウィキペディア英語版
Phragmen–Brouwer theorem
In topology, the Phragmén–Brouwer theorem, introduced by Lars Edvard Phragmén and Luitzen Egbertus Jan Brouwer, states that if ''X'' is a normal connected locally connected topological space, then the following two properties are equivalent:
*If ''A'' and ''B'' are disjoint closed subsets whose union separates ''X'', then either ''A'' or ''B'' separates ''X''.
*''X'' is unicoherent, meaning that if ''X'' is the union of two closed connected subsets, then their intersection is connected or empty.
The theorem remains true with the weaker condition that ''A'' and ''B'' be separated.
==References==

*
*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Phragmen–Brouwer theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.